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ELECTROMAGNETIC INDUCTION IN NON-UNIFORM
CONDUCTORS, AND THE DETERMINATION OF
THE CONDUCTIVITY OF THE EARTH FROM
TERRESTRIAL MAGNETIG VARIATIONS

By B. N. LAHIRI anp A. T. PRICE
Imperial College, London

(Communicated by S. Chapman, F.R.S.—Received 28 March 1938)

1. INTRODUCTION

The possibility of obtaining some knowledge of the distribution of electrical con-
ductivity within the earth, from the observed variations of the earth’s magnetic field,
was first considered by Schuster (1889), in developing his theory of the daily magnetic
variations. He separated these variations into parts of external and internal origin,
and then applied the theory of electromagnetic induction in a uniform sphere, due to
Lamb (1883), to show that the “internal” part could be attributed to electric currents
induced in the earth by the “external” part. Chapman (1919) made a more complete
analysis of the diurnal variation field, and showed that it was consistent with the earth
having a core of conductivity « = 3:6 x 10"1%e.m.u., surrounded by a non-conducting
shell of about 250 km. thickness. Chapman and Whitehead (1922) found, however,
that the relatively highly conducting oceans probably have an appreciable effect
on the internal field, and thus introduce some uncertainty in the estimate of «.

The theory for a uniformly conducting sphere was extended by Price (1930, 1931) to
the case when the field varies aperiodically, and this extension was applied by Chapman
and Price (1930) to the storm-time variations. They found that, in order to obtain a
theoretical induced field in agreement with the observed internal field, it was necessary
to assume a higher value of « than the above. They also-found that the induced currents
associated with the storm-time field penetrate deeper than those associated with the
daily magnetic variations. They concluded that « continues to increase with increasing
depth to values considerably greater than 3-6 X 107!3 e.m.u., beyond 250 km. The
main object of the present paper is to test and amplify this conclusion, by developing
the theory of induction of electric currents in a non-uniform sphere, and applying this
theory to the terrestrial magnetic variations.

The consequences of assuming different values for the magnetic permeability x inside
the earth were also considered by Chapman and Whitehead (p. 472), and in further
detail by Chapman and Price (p. 439). However, it seems likely on physical grounds—
see, for example, the memoir just cited—that # does not differ appreciably from unity
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510 B. N. LAHIRI AND A. T. PRICE ON ELECTROMAGNETIG

in those layers of the earth which are of main importance in our investigation. We shall
therefore treat x as a constant in the present work, and in the numerical applications
its value will be taken as unity.

The general theory for any non-uniform conductor is given in §§ 2, 3, where some
special features of the mathematical problem are noted. The formal solution of the
problem for any conductor with spherical symmetry is given in § 4. Detailed formulae
for the induced field and current distribution, in the special case where « = kp~,
where £ and m are constants, are derived and interpreted in §§ 5, 6. The terrestrial
magnetic data to be used are summarized in § 7, and the above theory applied to them
in §§ 8, 9. The results obtained support Chapman and Price’s view, that there is an
increase in « with increasing depth beyond 250 km., but they further indicate that the
increase takes place very rapidly, actually at about 700 km. depth, and that there is
also an effective distribution of « at or near the surface of the earth. It seems likely
that the latter represents the influence of the oceans, which is considered in § 10. The
distribution and depth of penetration of the induced currents are investigated in § 11,
from which it appears that the knowledge of « afforded by the daily and storm-time
variations is not likely to extend beyond a depth of about one-fifth of the earth’s radius.

The conclusions as to the distribution of k are summarized in § 12 and fig. 1. The most
important one is that, at about 700 km. from the earth’s surface, there is a very rapid
rise in «, from a value of order 107!% e.m.u. or less, to a value at least as high as
107! e.m.u., and possibly much higher. This suggests that there is some change in the
composition of the substance of the earth at that depth, though seismological evidence
appears to indicate that the transition to a denser, and therefore presumably, a more
metallic, content takes place at a considerably greater depth (Jeffreys 1929, pp. 130,
218; Gutenberg and Richter 1938, p. 363). It may, however, be of interest to note that
the greatest observed depth of earthquake foci is also about 600 or 700 km. (Berlage

1937)-
2. THE FIELD EQUATIONS FOR A NON-UNIFORM MEDIUM

Inside a continuous medium at rest the fundamental relations of the electromagnetic
field reduce to .
curl E = —B, div B = 0, (2,1)

curl H = 4nc+D, divD = 4mp, (2, 2)
where E and H are respectively the electric and magnetic field intensities, D and B
the electric and magnetic inductions, ¢ the conduction current density, and p the space-

charge density, all being measured in electromagnetic units.
If the medium is isotropic, we have also the constitutive relations

D=¢E, B=uH, c=«E, (2, 3)

where ¢, 4 and « are, in general, functions of the space variables. We shall assume that
the gradients of these functions exist at all points inside the medium considered.
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INDUCTION IN NON-UNIFORM CONDUCTORS 511

From (2, 2) we have the equation of continuity,

4 div ¢ = —divD = —4mp, (2, 4)
which, together with (2, 3), leads to the relation
p+4mkple = («fe) c.grad (e/k). (2, 5)

This shows that, if (a) ¢/« is constant or (b) ¢ is perpendicular to grad (¢/«), p is in-
dependent of the field vectors and will decay like exp ( —47kZ/¢). In these two cases the
space-charge distribution is independent of the electromagnetic field, so that if p is
initially zero it will remain so, and consequently ¢ will be non-divergent.

If A is the vector potential of the magnetic field, we have

curlA =B, E—=—A—gradg, (2, 6)

where ¢ is an arbitrary continuous function. If we identify ¢ with the potential of the
instantaneous charge distribution, we have

div (egrad ¢) = —4mp, (2,7)
which, on substituting in (2, 6), shows that ¢A will be non-divergent. We can therefore
take, without loss of generality,

diveA = 0. (2, 8)
It is also convenient in the present case to define a new vector A, by the relations
A, =A+grady, ¢ —=¢, sothat E——A,. (2, 9)
It is then readily found that A, satisfies the equation
curl curl A; —grad log uacurl A, + dmxu | +peA | = 0. (2, 10)

If the field varies sufficiently slowly, the displacement current D /47 will be small
and ¢ will be approximately non-divergent. In fact D may be neglected in equation
(2, 2) if it is small enough compared with either ¢ or curlH. When the field is oscil-
latory with a period of order 7', D is of order ¢E/ T and ¢ of order «E, so that

D<c if T> ek (2,11)
If this condition is satisfied the medium will behave like an ordinary conductor. In
electromagnetic units ¢ is of order ¢~2, where ¢ = 3:10'° cm.sec.™!, so that even if « is as
small as 1072 e.m.u., 7 has only to be greater than a few seconds.

In a dielectric, D may still be ignored if it is small compared with curl H. The latter

is of order H/L, where L is a length representing the scale of the field ; also H is of order
E/uL, so that curl H is of order E7/uL?. Hence

D <curlH if T3> /(e L. (2, 12)
This is simply the condition that 7" is large compared with the time taken by electro-
magnetic waves to travel across the region under consideration. In the case of the
earth L is of order 10° cm., and ,/(ex) of order ¢!, so that this condition is satisfied if
T > 0-03 sec.

64-2
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512 B. N. LAHIRI AND A. T. PRICE ON ELECTROMAGNETIC

3. ELECTROMAGNETIC INDUCTION IN A NON-UNIFORM CONDUCTOR

Consider a non-uniform conductor (e, x, ) surrounded by a dielectric (¢’, #', 0) and
situated in a varying electromagnetic field. The problem of determining the distur-
bance produced in the field by the conductor reduces to solving the above equations
for A and ¢ (or A, and ), subject to the conditions that they contain a part representing
the field of external origin and satisfy the proper relations at the boundary of the
conductor.

In all the cases to be considered, only the conductivity « is variable*, ¢ and x4 being
constants; also the above conditions (2, 11) and (2, 12) are satisfied, so that D may be
neglected. With these simplifications, we have

divA, = - V%, V2= —c.grad (1/k) = —4mp/e, (3,1)
V2A, +grad V2§ — dmxuA,. (3,2)

At the boundary of the conductor, the tangential components of E and H and the
normal component of B are continuous. Also the function ¢, which is the potential
of the space-charge distribution p together with a charge distribution ¢ on the surface
of the conductor, is continuous. To determine ¢ we have 470 —= D, —D, = ¢'E; —¢kE,,
where the suffix (,) denotes the outward normal component of any vector.

Also kE, = ¢, = ¢, and therefore

4mo+edlk = €'E,, (3, 3)

which corresponds to equation (2, 5) for p. But since (2, 11) is satisfied, the second
term on the left is negligible compared with the first, so that ¢ is very nearly equal to
¢'E,/4m e.m.u. Further, E, = d/k < 4mofe, i.e. E, < (¢'fe) E,, so that E, is in general
negligible compared with E;. We thus see that a minute charge distribution (of order
¢ 2E e.m.u.) is set up on the surface of the conductor, which practically reduces the
normal component of E just inside to zero. It is, in fact, the electrostatic field of this
surface distribution which deflects any currents approaching the surface so that they
flow parallel to it. Since E = —A,, we see also that the normal component of A, just
inside the surface must be zero. The other boundary conditions given above imply the
continuity of ¢ and of the tangential components of A, and x! curl A,

It will be observed that ¥ enters into the differential equations only in the form V2.
For certain distributions of « these equations will have a solution in which V2 is zero.
This indicates that there will be no charge distribution inside the conductor, but only
a surface charge, as is the case when the conductivity is uniform. Also the equation
(3, 1) indicates that, for these special distributions of «, the currents will flow in the
surfaces for which « is constant. Moreover, in such cases, the induced currents can be
determined by solving the above equations for A, without further considering ¥-. It
will, however, be noted that this does not imply that electrostatic eflects are ignored;

* J.e. k is a function of r, but not, of course, of &
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INDUCTION IN NON-UNIFORM CONDUCTORS 513

the new vector potential A in fact contains grad ¢, and its normal component is zero
just inside the conductor simply because of this term, which represents the effect of the
electrostatic field of the surface distribution.

4. CONDUCTORS WITH SPHERICAL SYMMETRY

We shall now show that there is a solution of the above special form when the con-
ductor is a sphere, with « a function of the distance r from the centre. If there is such a
solution corresponding to a given inducing field, it will be unique, because, if two
different solutions were found, their difference would, since the equations are linear,
correspond to a zero inducing field. It could therefore represent only the decay of
some initial distribution of current in the conductor, which we take as zero if we are
concerned only with the effect of the inducing field.

Let the radius of the sphere be 4, and let k = «(p), where p = r/a. When V) = 0,
we find the elementary solutions of (3, 2) for A, appropriate to spherical boundaries,
to be of the forms ragrad » and v grad w, where u, v and w are functions depending
on «(p). Since the radial component of A, is to be zero just inside the surface, we con-
sider the solutions of the form A, = ragradu. This makes divA, zero and therefore
satisfies (8, 1). Also it satisfies (3, 2) provided V2u = 4mkui, and the solution of this
equation, when «u is a function of p only, is the sum of terms of the form

w, = @y [l p) Sy

where S, is any surface spherical harmonic of degree 7, g, is the radius of the sphere of
reference of the spherical harmonics, and f, (¢, p) satisfies the equation

J (29 _ 2,2 J
oo\ P52 = [nt )+ smuac(p) gﬁ}f,, (4,1)
We thus have a solution of the equations for A, in the form of a series, of which a typical

term 1s
Ay, = apragrad{f,(4,p) S,} = ap(ragrads$,) f,(4 p). (4, 2)

Outside the conductor, where « = 0 and # = 1, both V2 A, and div A, are zero, and
therefore curl H = curlcurl A; = 0, so that

H = —grad 2, (4, 3)
where 2 satisfies Laplace’s equation, and is therefore the sum of spherical harmonic
terms of the form '

Q, = ao{e,() (9p)" 43, (2) (g0) 7'} Shs (4, 4)

where ¢ = a/a,<1. The function ¢,(¢) represents the inducing field of external origin
and will be a known function of ¢, while 7,(¢), corresponding to the induced field, has
yet to be determined.
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514 B. N. LAHIRI AND A. T. PRICE ON ELECTROMAGNETIC

The term in A, corresponding to 2,, is found by solving the equation

curl A, = —grad Q,,
n -n-1
which gives A,, = ay(ragrads$)) %’?Ien(t) —-(—gLoln——~ L,(6) 1, (4, 5)

which is, of course, in agreement with (4, 1) and (4, 2) when « = 0.
At the boundary p = 1, the continuity of the tangential components of A, and of the
tangential components of 47! curl A, lead to the relations

Fsn) =0T, (4,6)
L0+ A00] | = Hean e i) (4,7

All the boundary conditions considered in § 3 are then satisfied.

The problem is thus reduced to the determination of the unknown functions*
i(f) and f(¢, p) in terms of the known function ¢(#), from the equations (4, 1), (4, 6) and
(4, 7). The induced field is then given by the relevant part of (4, 4), and the induced
current is given by

¢ = KB = A, = —a,(ragrad ) x(p) 5, /{1, ). (4,8)

It will be observed that.the current is in the same direction at all points on the same
radius vector.

There are two cases to be considered, (i) when the inducing field is periodic and has
existed long enough for the transient effects of the initial circumstances to be negligible,
so that the induced field is also periodic with the same period, (ii) when the inducing
field is aperiodic and the effects of the initial conditions have to be determined.

In the first case, it is sufficient to consider a single harmonic constituent of the field,
of period 2m/a say, and we may then treat ¢, ¢ and f as the real parts of E¢*, I¢#* and
F(p) ¢* respectively, so that equation (4, 1) becomes an ordinary differential equation
with 7o in place of d/dz.

In case (ii) the most convenient method of solution is afforded by the Heaviside
operational calculus, in which the relations between the above time functions are
expressed by means of operators in the forms

ZU) = 1(p) (1), (4, 9)

S, p) = F(p,p) e(1), (4, 10)

the functions I(p) and F(p, p) being obtained by solving the equations (4, 1), (4, 6) and
(4, 7), with the operator d/d¢ replaced by a constant p. The values of i(¢) and f{(¢, p) can
then be determined from' (4, 9) and (4, 10) by known theorems in the operational

calculus.

* The suffix n will now be omitted when no confusion can arise.
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INDUCTION IN NON-UNIFORM CONDUCTORS 515

Thus, whether the field is periodic or aperiodic, the equations are first solved with
d/dt replaced by a constant, and we can therefore treat both cases together, taking p,
1(p) and F(p,p) to represent either the complex quantities i, I(ix) and F(ia, p) in the
first case, or the operators in the second.

The equation (4, 1), with the condition that the field remains finite at p = 0, deter-
mines F(p,p) completely, except for an arbitrary coefficient independent of p, so that

we can write
F([),,O) = C(lb) R(p,ﬂ), (43 11)

where R(p, p) will be a known function. On substituting in equations (4, 6) and (4, 7)
we then easily find

_ g (@nt1)p

C(p)—ﬂ—l—l(nﬂ—l—l)R—}—R” (4, 12)
_ ng*tl (2n+1) uR

I(p) _ﬂ_l{ _W+1)R—l737}’ (4, 13)

where R and R’ denote the values of R(p, p) and ;/;R(p, p) at p = 1. Thus when R(p, p)

has been found from (4, 1), C(p) and I(p) will be known, and f(z,p) and i(f) can be
determined.

When the field is periodic, the time factor z(¢) of the induced field is equal, by (4, 9),
to the real part of I(ia) E¢*. Hence the amplitude ratio, and the phase difference
at r = a,, of the induced and inducing fields, are equal, respectively, to the modulus
and argument of /(ix), which is given by (4, 13). In a similar way the amplitude and
phase of the induced current can be obtained from (4, 8) and (4, 10) on replacing
e(t) by Eei.

When the field is aperiodic, the time factors i(¢) and f(t, p) are found by solving the
operational equations (4, 9), (4, 10), the operators I(p) and F(p,p) being given by
(4, 11)—(4, 13). The solution of any operational equation, say g(¢) = G(p) ¢(¢), where
G(p) is a known operator, is given by

d [t ,
o) =5 J eli—u) h{w) du, (4, 14)
where h(u) = Q%}Ef A G(A) (—f{}, (4, 15)
L

the path of integration L being a curve from ¢—z00 to ¢4 700, where ¢ is positive and
finite, and the singularities of the integrand are on the left side of L, with |arga| <.
This contour integral (4, 15) is due to Bromwich (1916); the function 4(¢), which it
determines, is the value of g(¢) when e(¢) is equal to Heaviside’s unit function H(¢),
defined by H(f) = 0 when t< 0, H(¢) = 1 when ¢>0. Hence A(#) gives the result for a
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516 B. N. LAHIRI AND A. T. PRICE ON ELECTROMAGNETIC

sudden increase in the inducing field. When 4(¢) has been determined, the formula*
(4, 14) gives the result for any other variation of the inducing field, beginning at time
t=0.

Thus to determine ¢(¢) or f(¢,p), we have simply to substitute (1) or F(A,p) re-
spectively for G(1) in the above formulae. Alternately, having found f(¢, p), we may
obtain i(f) from (4, 6), which gives

nq2n+1

(1) = "L e(t) —ng L f (5, 1), (4, 16)

The above general formulae hold good for any spherical conductor in which « is a
(differentiable) function of p only. It will be observed that «(p) affects the result
entirely through the function R(p, p), which, from (4, 11) and (4, 1) is the solution of
d( ,dR |
o (#75) = 1) + dmuatpi (o) pL R, (4,17)
p\" dp
which does not become infinite as p tends to zero. The arbitrary constant factor re-

maining in R can be given any value, since it will obviously cancel out in the expressions
for I(p) and F(p,p).

5. THE FUNCTION R(p, p), WHEN & = kp~™

The particular case when « is a constant has been dealt with in the memoirs already
cited, and the solution is expressible in terms of Bessel functions of half an odd integer.
Another case of interest is when « = kp~2, where £ is a constant, for in this case the
above equation for R reduces to a homogeneous linear one, and is solved by

R— Ap b Bpbvs, s— Jlu(n 1) 1 403, (5,1)
where {2 = dmua’kp. (5, 2)

In the more general case where « = kp~™, where m is any real constant except -2,
the equation for R, on writing

_ —-% 1-dm 1770 <21~ el
R—U)p 5P 2€ s ¥ |m_2]> (573)
reduces to the Bessel equation
d w d )
a’z2 +z = (*+2%)w, (5, 4)
of which the general solution is
— AL(2)+BK(2), (5, 5)

where 1, and K, are the modified Bessel functions of the first and second kinds and of
order v.

* This formula expresses a superposition principle discovered independently in many branches of
physics; it is true when the differential equations involved are linear and hence whenever the methods

of the operational calculus are applicable. References to various proofs are given by Goldstein (1932,
p. 104).
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Since R(p,p) is to remain finite as p tends to zero, we find that (i) for m>2, 4’ is
zero, (ii) for m = 2, Bis zero, and (iii) for m <2, B is zero. Hence, taking the remaining
arbitrary constant in each case to be unity, we have

m>2 m=2 m<_2
R(p,p) = piK,(2), pEES, pt1(z). (5, 6)

6. THE INDUCED FIELD AND CURRENT-DISTRIBUTION WHEN K = kp™ ™, y=1

On substituting the above expression for R(p,p) in (4, 12) and (4, 13) and taking
4 =1, we obtain, after some transformations using the recurrence relations of Bessel
functions,
m>2 m=2 m<2
(2n+1) g" (2n+1) g (2n+1) g"

O = @) ah ) Gt ) et 0z O

o 72q2n+1](v_ (Z ) ng2n+l(5—-n_—-l) ﬂq2”“lv+ (z )
I(p) B (ﬂ—l— 1) Kwrl‘(zll) ’ (ﬂ—]" 1) (S—l—n,—|—2%) ) (ﬂ+ 1) I,,_ll(zl]) [} (69 2)

where z, is the value of z when p = 1. From these we can now derive expressions for
“the induced field and current when the inducing field is either periodic or aperiodic.

(1) Periodic field. The amplitude ratio, i/e say, and the phase difference, ¢—e¢ say, of
the field at » = a, are given by

tfe = mod I(ix), t—e = argl(ia), (6, 3)
where I(iz) is obtained from (6, 2) on writing i for p, so that z, = x,/7, where
x = 4a,/(mka) ]| m—2|. (6, 4)

The numerical evaluation of I(ia) is easy when m == 2. It is also easy when m>2
and v is half an odd integer, because then the Bessel functions in (6, 2) are of specially
simple form, and /(ia) consequently reduces to a rational function of ./(ix). In a few
other cases, e.g., when v is a small integer, it is possible to make use of tables of ker and
kei functions when m>2, or ber and bei functions when m<2; but in general v is
fractional, and it is necessary to use the ascending power series expressions for the Bessel
functions when x is small, or their asymptotic expansions when x is large.

When m>>2, we find, on expressing K, (x/i) in terms of I (x./i) and I_,(x/i), and
expanding these in ascending (fractional) powers of x,

K, (x/i) = Ymcosecvn{(D_,+i¥_,) e /4 — (D, + 1Y) e¥"/4}, (6, 5)
B 0 (___)r (%x>v+4r _ © (_)r (%x)v+4r+2
where =2 G Trert1)’ v A @) T 2rt2) (6, 6)

Vor. CCXXXVII. A. 65
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This is useful for evaluating /(ix) when « is sufficiently small, say x<<2. It leads when
v<_1 to the approximation

. _Z’l_q2"+1[‘(l*V) ({)21)( V_7T . IZT)
I(wc? =TT T )2 cos 2—{~zsm2 , v<1, x small. (6, 7)
If, however, v>1, the approximation becomes
. _ n92n+l B (5)2'
1(ia) = .l v(r—1) g) b v>1x small. (6, 8)

It follows from (6, 7) that, when v<<1 and a*a—0, i/e 0 and ¢— ¢->}vm; while from
(6, 8) whenv>1 and a?ka—0, i/e—0and ¢ —¢—>3n. Hence, as the surface conductivity &
is decreased, the phase difference ¢—¢ will tend to 90° only if v>1, i.e. if m<2n+3.
If m is greater than this, the phase difference will tend to v x 90°.

When x is much greater than 2, the series in (6, 5) do not converge very rapidly,
but in this case we can use the asymptotic expansions of the Bessel functions to obtain
fairly accurate results. We find

mod K, (x/1) = J{3ma~t eV (124 p)}, (6, 9)
) — tan-14_ X T
arg K, (x/1) = tan 128 (6, 10)
. (4v2—1) (402 —32).. {42 —(2r—1)2 . LI
where A4-1p ~r§0 ) 1 (837 ) }(cos‘f—zsmz). (6, 11)

This leads to the approximation

+ .
I(i) :%(p%—%ﬂiﬁ), (m—2)x large. (6, 12)
If m is made to tend to infinity in (6, 7) or £ is made to tend to infinity in (6, 12), we get
the correct results for an infinitely conducting sphere, viz. i/e = ng?**!/(n+4-1) and
t—e=0.

The corresponding results for m< 2 can be obtained by similar methods, but are
not required at present.

The induced current density is given by

¢ = —(ragrads,) a,kp~™iaC(ix) R(ia,p) Ee™, (6, 13)
and if we write Cc=Cyp, (6, 14)

where c, is the value of ¢ at the surface of the conductor, we have

n —n—1
c,=—(ragrads$)) a,kia Ay (O FEeiot, 6, 15
n/ PO n+ 1 n
—— —mR<2.(x>Io)
v=0p R 1) (6, 16)
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Thus the surface current ¢, can be obtained from the induced field already considered,
and for the distribution of ¢ below the surface we have only to consider the complex
function », whose modulus and argument will give the amplitude and phase of ¢ as
compared with c,.
K (yx./i 1
When m>2, we have v = p"m“%%j%) , Y= pTEImtL (6, 17)
This expression can be evaluated immediately by means of the various formulae already
given for K, (x./7). When yx is sufficiently small, we obtain from (6, 5) and (6, 6) the
approximation
I'1—v) .
— ph—m] 1 ____\ 1 2v yivm/2
0= gL (e, (6, 18)
which shows that, if the surface conductivity is sufficiently small, the induced currents,
down to a certain depth, will increase or decrease in intensity according as m is greater
or less than n. Also, throughout this depth, the phase of the induced currents will
remain practically the same. But, in any case, yx will become large at a certain depth,
depending on m and x. When this large value is reached, the asymptotic expansions
(6, 9)—(6, 11) may be used to determine ». From these we obtain the approximations

mod v = p~inlexp{(1—y)x//2}, argv= (1—7)x//2, (6, 19)
when yx is very large. This shows that the intensity of the induced currents will decrease
very rapidly with increasing depth after a certain depth has been reached, since the
exponential factor in mod r decreases, and becomes much more important than the
other (increasing) factor when p reaches a sufficiently small value. Also, when this
depth is reached, arg v will be large, and therefore the phase of the induced current
will change rapidly with increasing depth.

(ii) Aperiodic field. In this case we first obtain, as explained in § 4, the special forms
assumed by the time functions i(#) and f(¢, p), when ¢(¢) is taken equal to H(t). These
special forms will be denoted by ¢(¢) and ¢ (¢, p) respectively.

When m>2, we find, on evaluating the contour integral (4, 15), with G(A) replaced
by I(A) and F(A, p), respectively,

- nq2n+18_VJ'°° —ut/T 1 é’f
=), L A e (6, 20)
— qnp_% v %Efw —u2t/T Jv(u)/) YV+1(u) _ Yv(uy) Jv+1(u) @}
wieo) =l g ] UAEITE ) R R

where 7 = 16ma%k/(m—2)2, y = p~im*l, (6, 22)

Alternative expressions for ¢(¢) and ¥ (¢, p), which are more convenient for numerical
calculations, can be obtained by expanding the operators I(p) and F(p, p) in descending
or ascending (fractional) powers of p, and interpreting term by term, using the known
result pH(¢) = ¢t7/I'(1—v), which satisfies (4, 15) (Heaviside 1899, p. 69; Jeflreys

65-2
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1931, ch. 5). The conditions under which the formal expansion of any operator such as
1(p) in ascending (fractional) powers of p will lead to a series of (fractional) powers of
(1/t), which is asymptotic to ¢(¢), have been investigated by Sutton (1934). Thus, by
using the asymptotic expansions of the K,(z) functions, we obtain an expansion for
1(p) in descending powers of p, which leads to the following ascending power series

for ¢(¢),

“n 2n+1 226‘ i 236‘ t2
() = nq~|—1 { + +2' 2_|_ +A/( )( 73 Jr3 5572+ )} (6, 23)
where

s—1
by = ds(V—l) - zocras—r(v—l— 1)’ Co = 1’ ds(V) =
pr

(4v2—1) (402—32) ... {402 — (25—1)2}
8.s! ’
(6, 24)
This expression is convenient when £/7 is small. For larger values of ¢, we find the
asymptotic expansion

s e N O

+F(22—{[—];()1~(;})_}:22V) (‘_17_15)‘1'2”_'_”.}. (6, 25)

When ¢(¢) has been obtained in the above way, the value of i(¢) corresponding to
any given ¢(¢), can be found by substituting ¢(«) for #(«) in (4, 14); this formula can be
evaluated by numerical integration when e(¢) is an empirical function. When ¢(¢) is
an analytical function, it is sometimes more convenient to express ¢(¢) in the operational
form E(p) H(t) by means of the theorem*

@

E(p) = p[ "erelt) (6, 26)

0

and then to evaluate i(f) by suitably expanding the combined operator /(p) £(p). An
important case is

et) = e MH(t), E(p) = p/(p+A); (6, 27)
which leads to various expressions for (f) depending on the values of A and 7. Thus
when A¢ is small but ¢/7 is large, we find (cf. 6, 25)

. ng2ntl 45\ v 45 17

0~ i +V){(7) M —2(T) ML 00+
2{(1—v)}

1(24v) I(1—2v

T )(4t) M, 00 ), (6, 28)

where M_ (z) is a confluent hypergeometric function, defined by

M_(z) =1 S, z a

—s\ I—s (1—s5)(2—s) (1—s)(2—9)(83—y)

* Carson (1926, p. 16). The theorem was stated by Heaviside (1912, p. 327), but not explicitly
proved.

Fo. (6, 29)
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The series (6, 28) is asymptotic to ¢(¢) for large t/7, though each term of this series is
expressed in (6, 29) by means of an ascending series in At. When A¢ is itself large, M _ (A¢)
has the asymptotic expansion

s s(s+1 sS(s+1) (s+2
M_ (1) ~T (/12t2 )"‘ ( /1)3;(3 )— (6, 30)

The corresponding results for m <2 will not be given in detail, but it may be noted
that in this case ¢(f) and (¢, p) are expressible as series of exponential terms of the
form C;exp (—«,#/7), where the a’s are the (real and positive) zeros of J,_,(z) (see, for
example, the result for m = 0 given by Price 1931). This is because (1) and F(4, p),
regarded as functions of a complex variable A, possess Mittag-Leffler expansions, so
that ¢(f) and ¢ (¢,p) can be determined from an extension of the Heaviside partial
fraction rule. '

It is of interest to note how the form of the solution changes as m passes through the
value 2. As m approaches 2 from below, v tends to infinity and the simple poles of
I(A) (cf. (6, 2)) converge together at the origin, which becomes an essential singularity
for m>2. The influence of this on ¢(#) is to replace the above-mentioned exponential
series by an exponential integral of the form (6, 20).

In the transitional case m = 2, we find

6 = "L J(3)emsam D_yiyc2tpry), (6, 31)
where 7, = 16ma?k/(2n+1)2, (6, 32)

and D_;(z) is a Weber parabolic function (Whittaker and Watson (1920), ch. 16),
which can be conveniently expressed in terms of the error function.

The distribution of induced currents at time ¢, due to a sudden change in the in-
ducing field, is obtained by substituting ¥ (¢, p) for f{t, p) in (4, 8). An explicit expression
for (¢, p) has been obtained in (6, 21), but this is not very convenient for numerical
calculations. Alternative expressions for the current density can be obtained by sub-
stituting the operational form for ¥(¢,p) in (4, 8), and suitably transforming the
resultant operator in the manner already described. Denoting the value of ¢ when
e(t) = H(¢) by G, we find

(m—2) (2n+1) ¢"2

C=-— 877610(72+ 1) (rAgrad Sn) X(t, p), (6, 33)
, K
where te) = o1 o) g L) . (6, 34)
Using the asymptotic expansion
K,(yz) e 2 by by )
Ko™ g 3] [(6.39)
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where the coeflicients 4,, b,, ... are readily found by dividing the asymptotic series for
K, (yz) by that for K,(z), we obtain

b x(t,p) = p~ 1 Am(E (t]7) + b E\ (/1) + by Ey(t7) + ...}, (6, 36)
Ei) = [ By dus Efei) = [(T)e® Evfei) = 1—ertg = [ e,

(6, 37)

& = (y—1)%1/(40). (6, 38)

This form of the result is useful for all values of p (including unity) provided ¢ is suffi-
ciently small. If, however, p differs sufficiently from unity to make y—1 large, the above
expression may be reduced, by means of the asymptotic series for the error function,
to the much simpler form

2t

(L, p) Np—l—%mA/(‘th)e«ﬁP +bl{(7i1~)7}+%b2{(7~2_+)7}2+ ] (6, 39)

which is useful for all values of ¢ and p which make 2¢/(y —1) 7 small. For larger values
of ¢, we find, by expanding 1/K,,,{/(7p)} in ascending powers of p,

3_1

2 1 v
)~ P p‘f‘@’"ﬂ””e‘”{l ) g e

T{ﬁ(‘(g_f;); 12wy 0, (y1) + - } (6, 40)

where n = y1/(4%), (6, 41)

and the function w,(z) is given in terms of the confluent hypergeometric function
Wy, m(2) (Whittaker and Watson’s notation) by

ws(z) - e%zz—%(s-klhz) W%(s+1+v),%v(z)3 (6’ 42)

v2— (s—l—v)2+{v2+ (s+v)2 {2+ (s+v—2)?}

~lhey 21 (42)?

TR (6, 43)

The series (6, 40) is asymptotic to x(¢,p) for large ¢, and is useful when 5 (= y7/(4f)) is
fairly small. The values of p and ¢ which are of most interest (e.g. the value of p at which
the maximum current density occurs for a given value of ¢) are frequently those for
which 7 is small but y7 is large. In such cases it is convenient to use the series (6, 40),
which is asymptotic to x(¢,p) for small 5, but to evaluate each term of this series by
means of (6, 42) which is asymptotic to w(yn) for large yn.

The general character of the induced current distribution can be readily deduced
from the above expressions for y. The current density is proportional to y, and (6, 39)
shows that, as -0, y = 0 for p<<1 but -+ oo for p = 1. Also, for the period immediately
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following, in which ¢<7, y is proportional to ,/(7/¢) at the surface (i.e. at p = 1), while
for points inside the conductor (p<1) we have the approximation

—y)2 .
Y = p‘l“%mA/(iz) exp{—T—(l‘L—tV—L} when either t<7 or t<(1—y)7. (6, 44)

This increases as ¢ increases, and also as p increases, in the range of values of ¢ for which
the approximation holds. Hence the first effect of a sudden change in the inducing
field is to produce a sheet-current distribution on the surface of the conductor, which
then gradually penetrates inwards. This is, of course, in agreement with physical
considerations.

For larger values of ¢ we obtain, from (6, 40), the approximation

2 T\ 7y? T
Y = ) (4_t) p~monl exp(—%), when t>%. (6, 45)
. oy . m—2 T1)?
In this case i 0, when ¢ = il 4
This value of ¢ is sufficiently large for the above approximation to hold good if
m-t+n-t1

'}/ (: p—%m+l) >>

m—2 ’

and this condition can always be satisfied by taking p small enough; actually, for large
values of m, it is satisfied even when p differs only slightly from unity. Also for the same
value of ¢, dy/dp will become negative if p is increased, and positive if p is decreased.
Hence at sufficiently great depths for the above conditions to be satisfied, the current
distribution at time ¢ has its maximum intensity at p, where

%nﬂ—n—l—l

—— (6, 46)

2—-m
Po =

and the above approximations (6, 45) will hold good for a portion of the forward part,
and for the peak and the whole of the rear part of the wave of current density which
is gradually penetrating inwards. The peak of this wave, i.e. the point of maximum
current density, travels inwards with a velocity
i) 4(m-+n+1)

__a’%) = __(.._, . ),061 1, (6, 47)
which thus continually decreases with increasing depth. The magnitude of this maxi-
mum current density at p, is proportional to y,, where, from (6, 45) and (6, 46),

_ 2 pmtntl (_,”“F”il)
=Taenf’ Tm—e ‘

This shows that, if k increases downwards at a rate greater than that corresponding to
k = kp~2, and a sudden change occurs in the inducing field, represented by the first
spherical harmonic 7 = 1, then the pulse of induced current will actually ¢ncrease in

(6, 48)
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intensity, as it penetrates (more and more slowly) into the interior of the conductor.
If n = 2 it will remain constant in intensity, while if n>2 it will decrease. The total
amount of induced current will, of course, continually decrease, in spite of the fact that,
for n =1, the maximum intensity will continually increase. This implies that the
maximum becomes more and more sharp as p, is decreased (see, for example, fig. 3);
thus (6, 45) shows that when p, differs sufficiently from unity, the current density will
fall rapidly from the maximum as p increases from p,, because of the factor p=”-"-1, and
also as p decreases, because of the factor exp {—7p?7™/(4¢)}, and this falling away from
the maximum becomes more and more pronounced as p, is decreased.

7. THE TERRESTRIAL MAGNETIC VARIATIONS

The preceding theory will now be used to show that the observed relations between
the external and internal parts of certain magnetic variations can be explained con-
sistently on the hypothesis that the internal part is due to electric currents induced
in the earth by the primary external part, and that these relations indicate the dis-
tribution of conductivity down to a certain depth within the earth.

Any time variation of the earth’s magnetic field, of a sufficiently world-wide
character, may be analysed by spherical harmonic analysis into terms of the form

Qb = (A, cos pA+ Aysin pA) Pb(cos ), (7,1)

where 6 is the north polar distance, A the east longitude, and 4,, 4, are each of the

form '
As = ao(er‘?spg"“lfsﬂ(;n"l): (73 2)

in which q, is the radius of the earth and p, = r/a. The coefficients ¢£, and £, will be
functions of the time, and will relate to the fields of external and internal origin
respectively.

The particular variations which will be considered are the solar diurnal variations,
denoted by S, and the storm-time variations, denoted by D_,. The actual observational
data will be the same as those used by Chapman and Price (1930): they are collected
and tabulated here for convenience, but for a full description and explanation,
reference should be made to their paper.

The solar diurnal variations depend only on local solar time, and therefore a typical
term in their potential can be expressed in the form

Qb= ayfep ptcos (pA+at+ef) +1f pg"~' cos (pA+at+2)} P2 (cos ), (7, 3)
where o = 2mp[86400, (7, 4)

if ¢ is measured in seconds. The principal harmonics are those for which p = 1, 2, 3, 4,
and n = p or p+ 1. The amplitude ratios ¢/i and the phase differences ¢ —¢ of these har-
monics, as determined by Chapman (1919), are given in Table I.
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TaBLE I. AMPLITUDE RATIOS AND PHASE DIFFERENCES OF HARMONICS IN SOLAR
DIURNAL VARIATIONS AS FOUND BY CHAPMAN

1905 1902
(sunspot maximum) (sunspot minimum)
"Mean Mean Mean Mean
P equinox solstice equinox solstice Mean
P} (29, — 5°) 2-8, — 3° 27, —23° 3-0, —20° 28, —13°
Ve 24, —18° 2:3, —19° 2.0, —17° 2.2, —18° 2.2, —18°
P} 2-4, —21° 27, —20° 2-5, —21° 2-4, —21° 2-5, —21°
Py 2-2, —23° 2-3, —15° 2-9, —30° 3-2, —24° $ 2.7, —23°
Seasonal harmonics (mean of 1902 and 1905)
$ (summer-winter) } (spring-autumn)
P} 25, — 7° 21, — 1° 23, — 4°
P} 2:3, — 8° 2:6, + 2° 2-45, — 3°
P 2-0, —32° 2-2, —13° 21, —22°

P! 17, —30° 17, —19° 17, —24°

The regular part of the changes of the earth’s magnetic field during a typical magnetic
storm were separated by Chapman (1918) into the disturbance diurnal variations and
the storm-time variations. The field of the storm-time variations is symmetrical about
the earth’s axis and it varies with the time measured from the commencement of the
storm. This field for middle and lower latitudes was separated into parts of external
and internal origin by Chapman and Price. Its potential is expressed in terms of zonal
harmonics, i.e. p = 0, and (in lower and middle latitudes) only the first harmonic
P, is found to be of importance. The values of ¢; and ¢;, as found by Chapman and
Price, are given for a series of times after the commencement of the storm in the first
column of Table III, and are shown graphically in fig. 2.

8. DISTRIBUTIONS OF CONDUCTIVITY WITHIN THE EARTH WHICH ARE CONSISTENT
WITH THE SOLAR DIURNAL VARIATIONS

It was shown by Chapman that the internal part of S could be explained by electro-
magnetic induction, if the earth were assumed non-conducting down to a depth of
about 250 km., and uniformly conducting below, with a conductivity of 3:6 x 1013
e.m.u., which is considerably higher than the measured value for most surface rocks
(about 1071° e.m.u.). But Chapman and Price found that this distribution would
not lead, on the induction theory, to sufficiently large values for 7, (¢) in the later stages
of the storm-time variations, though a distribution in which « is zero down to about
375 km., and equal to 44 x 107!2 e.m.u. below this depth, would do so. In view of
this they considered that a distribution in which « continued to increase with increasing
depth for some distance below the earth’s surface might lead fo a consistent explanation
of the internal parts of both .§ and D,.

Vor. CCXXXVIL. A, 66
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To investigate this possibility, distributions of ¥ will now be considered which are
given, as in § 5 above, by
k= 0for p>1, «k=Fkp ™ forp<l, (8, 1)

where p = r/qa, and ¢<<1. This will allow for the possibility of a (relatively) non-
conducting layer just below the surface, together with a conducting core of radius ga,,
in which the conductivity increases (assuming m positive) with increasing depth. It
should be observed, however, that, since the induced currents flow in an outer shell of
the earth whose thickness is probably less than 0-2q, (cf. § 11), the value of « at greater
depths than this will not influence the induced fields. Hence results derived for the
distribution (8, 1) will still hold good if (8, 1) is true only for the outer shell of thickness
0-2a,, and any inference as to the actual distribution of « within the earth will apply
only to this outer shell.

By choosing suitable values of m, £ and ¢, various distributions of « will first be found
which are compatible with the observed relations between the external and internal
parts of §. We shall then investigate whether any of these distributions will also account
satisfactorily for the internal field of the storm-time variations. The influence which
electric currents induced in the oceans may have on the internal fields will be ignored
for the present, but will be considered later in § 10.

On the assumption that the internal field is due to currents induced in the earth
in which the distribution of « is given by (8, 1), the values of ¢/i and ¢—¢ for any
harmonic in $ are given by (6, 3) and (6, 2)*, where « is given by (7, 4). Hence if one
of the three disposable constants (m, £, ¢) is chosen, the observed values of ¢/i and ¢—
for a single harmonic in \§ will determine the other two constants.

There is, of course, no a priori reason for supposing that a set of values of
(m, k, q) thus found for one harmonic will necessarily fit the other harmonics, though
Chapman found that with m = 0, i.e with a uniformly conducting core, the values
k=36x10"13 e.m.u., ¢ = 0-96 gave a satisfactory fit for those harmonics for which
the analysis of the observations gave consistent and reliable results. The most satis-
factory results are those for the harmonics P, P}, P%, and it is of interest to note that
the values of ¢/i and ¢— are nearly the same for all these harmonics (cf. Table I).
Indeed, Chapman obtained the above values of £ and ¢ by comparing the calculated
results for P} with the mean of the observed results for all four harmonics P}, P3, P3,
and P}, instead of the observed results for P} only.

The present calculations are based mainly on the observational results for P}, as
these seem to be the most reliable. Some preliminary calculations for m > 0 showed that
the corresponding values of £ and ¢, deduced from the values of ¢/i and ¢—¢ for this
harmonic, gave results for the other harmonics, which are actually rather more satis-
factory than in the case m = 0 above. The question of fitting all the harmonics satis-
factorily is dealt with further in § 12.

* Actually the theory leads more directly to the values of ife and ¢—e¢, as in these equations, but it is
convenient to convert to the forms ¢/i and ¢ — ¢ for comparison with previous memoirs.
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While it would be possible, having chosen one of the constants (m, £, g), to equate
the observed values of i/¢ and (—e¢ to mod I(iz) and arg I(ix) respectively (cf. equations
(6, 3)), and, using (6, 2), to solve for the other two constants, the method would in
general be laborious, since (6, 2) in general involves Bessel functions of small fractional
order and complex argument. Hence the procedure adopted was to start with the
values found for £ and ¢ by Chapman when m = 0, and to find the changes in ¢/i and
¢—t produced by taking larger values of m, but the same £ and ¢. These changes in-
dicated how £ and ¢ should be modified to obtain the observed values of ¢/: and ¢—¢,
and new calculations were then made with these modified £’s and ¢’s. Thus, when
m = 8, it will be seen from Table IT A that the original values of £ and ¢ give a value

TaBLE ITA. CALCULATED AMPLITUDE RATIOS AND PHASE DIFFERENCES FOR
THE HARMONIGC P % IN S, CORRESPONDING TO VARIOUS ASSUMED DISTRIBUTIONS
OF CONDUCTIVITY WITHIN THE EARTH

P3
Distribution of conductivity, k =kp=™ for p <1, el e—1t
k = 0 for p>1 where p =r/qa,, a, = radius of earth Observed values
p A - 2-2 —18°
q 1083% m Calculated values
0-96 3-6 0 2-41 —18-9°
0-96 3-6 2 241 -17-9°
0-96 3-6 8 2-43 —15-5°
0-96 1-8 8 2-70 —18-3°
1-0 1-8 8 1-96 —18-1°
0-992 1-45 16 2-20 —18-0°
0-99 0-36 30 2-70 —17-3°
1-0 0-36 30 ; 2-55 —17-3°

TaBLE 1I1B. CALCULATED AMPLITUDE RATIOS AND PHASE DIFFERENCES FOR THE HAR-
MONIC P% IN S, ASSUMING THAT THE OCEANS HAVE AN EFFECT EQUIVALENT TO A
UNIFORM SHELL OF TOTAL CONDUCTIVITY 2 X 107¢ e.m.u. X cm., AND CORRESPONDING
TO VARIOUS ASSUMED DISTRIBUTIONS OF CONDUCTIVITY WITHIN THE EARTH

P
Distribution of conductivity, « = kp—™ for p <1, efi €—1t
k =0 for p>1 where p =r/qay, a,=radius of earth Values just inside surface shell
p ~ 24 -15°
q 1013 % m Calculated values

0-96 36 8 2-43 —15-5°
0-96 3-6 12 2-42 —14-8°
0-964 293 16 2-40 —15-0°
1-0 0-36 37 2-37 —14-8°
1-0 0-1 51 — —12-9°

for e—¢ which is (numerically) too small and a value of ¢/: which is too large (but note
that this value of ¢/i is very nearly the same as that for m = 0, which differs somewhat
from the observed value, owing to the fact mentioned already that Chapman took
the average of the results for several different harmonics in his calculations). The
result for ¢—¢ is improved by halving the value of £, as in the next entry in the table,

66-2
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but this makes ¢/i too large; this can be remedied by increasing ¢, which scarcely affects
¢—t. The next result shows that ¢ = 1 is too large; evidently a value about 0-98 would
be satisfactory. No attempt was made to determine exact values of k£ and ¢ corresponding
to every m, as our object in these preliminary calculations was to explore the general
range of permissible values of £, ¢ and m.

There is, however, just one case, viz. when m = 16, when the corresponding exact
values of £ and ¢ can be found very simply; this forms a useful guide when other values
of m are considered. When m = 16 and n = 3, the value of v, given by (5, 3), is %, so
that the Bessel functions in (6, 2) are of a specially simple type and (i) reduces to the
rational function

[(ZOC) = 2q 1 _T_\i,i/z: (8, 2)
where x is given by (6, 6) and is therefore proportional to ¢,/k .

On equating arg I(ix) to the observed value of t—e¢ (18°), we find x = 1:47. Sub-
stituting this value of x in mod [(iz), and equating mod /(ix) to the observed value of
ife (0-45), we find ¢ = 0-992. Substituting this value for ¢, together with the known
values of ¢, and «, in the expression (6, 4) for x, we find £ = 1-45 x 10713 e.m.u. It will
be observed that ¢ is now approaching unity, while £ has rather less than half the value
found when m = 0.

In the calculations for which m <16 (some further results appear in Table 11 B), it
was found permissible to use the asymptotic expression for the Bessel function appearing
in I(ix), since x was then sufficiently large. When m > 16, the ascending series for the
Bessel functions must be used, and these do not converge very rapidly when m is near 16.
Hence larger values of m were first considered and calculations were made for m = 51,
44, 317, 30, these numbers being chosen because they make v = 1, &, 1, 1 respectively
and slightly simplify the computations. For m = 51, it was found that the approxi-
mation (6, 7) could be used. This showed that the phase difference would be equal to
1% 90°, which is too small, and would be practically unaffected by any change in k. This
implies that, for m>51, the conductivity increases downwards so rapidly that the
outer layer of low conductivity is too thin to shield the inner and more highly conducting
region sufficiently, no matter how small « is taken at the surface, provided, of course,
it is not actually zero. Thus the observed value of ¢ —¢ is of itself sufficient to show that m
cannot be greater than about 50. The results for m = 30 are shown in the last two lines
of Table II A. Here ¢—u is still slightly too small (numerically), and ¢/i is too large,
even when ¢ is given its largest possible value. The discrepancy in the values of ¢/
could be removed by taking a value of £ a little larger than the chosen value 3-6 x 10714;
this would, however, further decrease (but only slightly) the value of ¢ —¢. We conclude
that m = 30, with ¢ =1 and £ about 4 x 107!* e.m.u., would give results which are
possibly just within the margin of error in the observational results. But m cannot be
greater than about 30, because ¢ has to be increased as m is increased and it reaches
unity, its maximum possible value, when m is about 30. Thus the values of (m, £, ¢),
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with m positive, which are consistent with the observed results for P in S, range from
(0, 3:6x 10713, 0-96) to (30, 4x 10~14 1). The distributions of x which correspond to
these values, when m = 2, 8 and 30 respectively, are shown graphically as the curves

a, b and ¢ in fig. 1.
depth from surface divided by radius
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Fic. 1. Distributions of conductivity within the earth compatible with the magnetic variations. All
the distributions represented are compatible with the observed relation between the external and
internal parts of the harmonic Pj in S, but only 4 and e are compatible also with the D,, observations.
In the case of d and ¢ there is a thin shell of relatively high conductivity at the surface. This is repre-
sented by a thick shell, for which the product of the thickness ¢ and the conductivity k, has the correct
value for the thin shell. Thus the area under curve d (or ¢) near the surface gives a correct indication
of the total conductivity of the surface shell, but the values chosen for ¢ and k, have no separate
significance.

9. DISTRIBUTION OF k CONSISTENT WITH THE ZONAL (‘‘STORM-TIME’’) PART OF
FIELD OF MAGNETIC STORMS

The field now to be considered is essentially of an aperiodic character. The time
factors ¢,(¢) and i,(¢), associated with the first zonal harmonic in the field potential
(cf. § 7), are given for a series of values of ¢ in Table ITI, and are shown graphically in
fig. 2.

The function ¢,(f), during the later part of the storm (which is the part of main
interest in the present investigation), can be well represented by AdeAt-# where
A= 28,1 =3-2x10"5and £, = 18 x 3600, so that ¢— ¢, is the time in seconds, measured
from 18 hr. after the commencement of the storm. This is shown by the following
table:

Time in hours 18 24 30 36 42 48
Observed ¢, (¢) 28 26 24 23 21 20
Ae—At—to) 28-0 26-1 24-4 22-7 21-2 19-7

In the preliminary calculations we take, for simplicity, not the actual external field
asrepresented by ¢, (¢), but the field represented by de=2“-% H(t—t,), where H(t—1,) = 0
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for t<4; and = 1 for ¢>,. This assumed field ignores the initial phase of the storm in
which ¢, (#) first rapidly assumes a negative value but recovers its initial value again in
about 4 hr. It also replaces the gradual (though rapid) increase of ¢,(¢) between 4 hr.
and 18 hr. by an instantaneous increase at 18 hr.

As regards the initial phase, no serious error can arise from ignoring this, because
the current systems induced by the first rapid decrease of ¢,(¢) will be almost exactly
annulled by the equal and opposite current system induced by the rapid recovery of
e(t). This is, in fact, proved by the observations, which show that 7, (¢) recovers its initial
value at almost exactly the same time as ¢ ().

An instantaneous increase of ¢ (¢), such as that assumed at ¢ = ¢;, would produce the
maximum possible value of 7,(¢,), viz. $¢°4, which is independent of «. This value of
t,(¢,) would correspond to a distribution of induced currents on the surface of the
conductor, which would rapidly diffuse into its interior. Therefore, for a short period
after time ¢ = ¢, the induced field would rapidly decrease. Hence the effect of re-
placing the gradual rise of the observed ¢(¢) by the assumed instantaneous rise at
t = t, will be to give too high a value of 7,(¢) at time ¢ = ¢,, and too rapid a decrease of
¢,(¢) for a short period following this time. If, however, the calculated and observed
values of ¢,(f) agree at some instant shortly afterwards (say about an hour later), a
comparison of the subsequent changes in the two values will indicate whether a suitable
distribution of x has been adopted.

Using the formulae (6, 23)—(6, 32), calculations of ¢, () were first made, corresponding
to the above approximation for ¢, (¢), and taking m = 2, 8, 12, 16, with the corresponding
values of £ and ¢ already found suitable for PZ. The results for m = 2 and m = 8 are
shown as curves ¢’ and 4’ in fig. 2. It will be seen that the calculated ¢;(¢) decays too
rapidly in these cases; increasing m was found to improve the result, though the decay
was still too rapid when m = 16.

The largest permissible value of m consistent with the P} observations has been seen
to be about 30, the corresponding distribution of x being represented by curve ¢ of
fig. 1. The time factor ¢;(¢) was therefore next calculated for this limiting distribution.
In this case, in order to obtain greater accuracy, the actually observed ¢,(¢), as given
in Table ITI, was used; the function ¢(¢) was first calculated from (6, 23) and (6, 25),
and ¢(u) substituted for A(x) in (4, 14), the integral being evaluated graphically for
various values of 2. The result obtained is shown as curve ¢’ in fig. 2. This curve is much
closer to the observed values of 7;(#) than is the curve @', but it is still consistently below
those values, and the discrepancy can hardly be accounted for by the possible errors in
the observational material. Moreover, it seems unlikely that the actual distribution
of conductivity should just happen to coincide with the limiting case (m = 30) of a
series of distributions of special form which are compatible with the P§ observations.
It is more probable that the form of the distribution differs in some respect from the
(m, k, q)-model, since the observations appear to require in some region a higher
value of « than this model can allow, if it is to remain consistent with the observed
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results for PZ. We conclude that, though the curve ¢ of fig. 1 is a much better approxi-
mation to the actual distribution of « within the earth than is the curve a (which is
practically the same as the uniform core distribution previously considered by Chapman
and Price), a still better approximation would be obtained if the model could be modi-
fied so as to allow for a greater conductivity of the inner core.

307

207

o \\w@e—‘
\ X 7

: —
\C/
- \
— \a/
07|
-107F
[ l I 1 | 1
6 12 18 24 30 36 47
hours

Fic. 2. Values of 4,(¢) for storm-time variations calculated for the distributions of
conductivity shown in fig. 1.

TasLE III. OBSERVED VALUES OF ¢; AND {; FOR THE STORM-TIME VARIATIONS, AND
VALUES OF i; CALCULATED ON THE INDUCTION HYPOTHESIS, FOR VARIOUS DISTRI-
BUTIONS OF k. UNIT =1y. TIME MEASURED FROM } HR. BEFORE COMMENCEMENT
OF STORM

Time Observed Calculated values of ¢, for various distributions of «
hours e 1 a b ¢ d e’
0 0 0 — — 0 0 0
1 —11 -5 — - — —_ — 4
3 - 6 - 2 — — — — - 22
6 11 3 e — 39 4-0 4-0
12 26 10 — — 9-0 9-3 9-6
18 28 10 (12) (12) 9-6 10-1 10-3
24 26 11 7-8 81 87 9-1 94
30 24 9 6-2 7-0 7-8 80 8-8
36 23 -8 50 56 7-0 74 84
42 21 7 33 45 65 72 7-7
48 20 7 1-8 4-1 57 7-1 74
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The conductivity of the inner core could be increased if it were screened more
effectively, in the case of the periodic variations, by the surrounding layers. This could
be done by increasing (within limits) the conductivity near the surface of the earth.
This additional conductivity might either be concentrated in a thin shell at the surface,
or spread throughout the thick shell surrounding the core. The available direct evidence
appears to favour the first of these alternatives, for the thin shell might be accounted
for as representing the influence of the relatively highly conducting oceans, which
cover the greater part of the earth’s surface. The conductivity of sea-water is, in fact,
about 4 x 107! e.m.u., which is considerably higher than the surface value (4 x 10~
e.m.u.), of «, given by the distribution ¢ of fig. 1; on the other hand, the measured
conductivity of surface rocks is only about 10716 or 10715 e.m.u.

10. THE INFLUENCE OF THE OCEANS

The possibility that the electric currents induced in the oceans have an appreciable
effect on the magnetic variations was pointed out by Chapman and Whitehead, who
showed that the internal field of diurnal variations could arise from induction in a
uniform core, surrounded by a thin uniformly conducting surface shell, of which the
conductivity did not exceed that of a uniform ocean about half a mile deep. The
actual oceans, if uniformly distributed, would cover the earth to a depth of over 2 miles,
but they are so broken up by land masses that their shielding effect is greatly reduced.

If the total induced field corresponding to any external magnetic variation is due
partly to currents in a conducting core, and partly to currents in a thin non-uniform
oceanic shell, we may expect the two parts to differ considerably in distribution. Under
the probable assumption that the conducting core has spherical symmetry, the first
part would have a distribution similar to that of the inducing field, since, as shown in
§ 4, any particular spherical harmonic in the inducing field will give rise to the same
harmonic, and to no others, in the induced field. The second part would, however, be
largely influenced by the geographical distribution of the oceans, and its distribution
might differ greatly from that of the inducing field.

The fairly constant values of the amplitude ratios for the different harmonics in
Table I indicate a close similarity between the actual distributions of the external and
internal parts of S. This does not necessarily imply that the induced field is due entirely
to currents flowing in the spherically symmetrical core; it does, however, show that,
so far as the local time variations S are concerned, any influence which the oceans have can
be represented approximately by a uniformly conducting shell. The non-uniformity of
distribution of the actual oceans would introduce harmonics into the induced field,
which do not depend solely on local time. These, however, would be eliminated by
the analysis of the observations by which §'is determined.

In the case of the storm-time variations, the method of analysis eliminates all
harmonics other than zonal harmonics, and the observed internal and external fields
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are again very similar, being represented almost entirely by P, in middle and lower
latitudes. We infer that, for these variations also, the oceans can be represented by a
uniformly conducting shell. The conductivity of this shell may, however, be different
from that required in the case of §'; probably it will be rather less because the induced
current circuits in the case of D, coincide with the circles of latitude, and therefore
have always to pass through considerable land areas.

When the equivalent uniform shell is taken into account, it is necessary to determine
the field just inside the shell in terms of that outside, and to use this inside field, instead
of the observed field, in any calculations involving « at greater depths. For a shell of
conductivity «, and thickness ¢ (small), the relations between the time functions ¢ and ¢
for the field outside the shell, and the corresponding functions ¢’ and i’ for the field just
inside the shell, are found to be

¢, d

f_ o Gd, N i d, .
e =e na’t{ne (n+1)2}, " =1 n+1a’t{ne (n+1)1}, (10, 1)
_4mkyagd '
where €0 ="gp 11" (10, 2)

When the field is periodic with period 27/«, we replace d/dt by iz and e by Eei* etc.
in (10, 1); then the modulus and argument of I'/E’ give, respectively, the amplitude
ratio and phase difference of the field just inside the shell in terms of the amplitude
ratio (mod //E) and phase difference (arg I/E) of the field outside the shell. As x4 is
increased from zero, the amplitude ratio and phase difference of the field just inside the
shell, corresponding to a given field outside, will both decrease. Now, if the part of
internal origin of the field just inside is due, as we suppose, to induction in a spherically
symmetrical core, the amplitude ratio and phase difference of the field will be equal to
the modulus and argument of the function I(ix), given by (4, 13);i.e. I'/E’ = I(iz). But,
if =1, arg I(ia) lies between 0 and 90°; it tends to zero if the conductivity of the
core, near its surface, tends to infinity, and to 90° if the conductivity tends everywhere
to zero. Hence the maximum permissible value of «,d, consistent with a given field
outside the shell, will be obtained when arg (I'/E’) = 0, and the surface value of « for
the corresponding core will then be infinite.

In the case of the harmonic P% in S, we find that the maximum value of «,d, con-
sistent with the observed phase difference of the outside field, is

K =51x10"%e.m.u. x cm. : (10, 3)

which is roughly equivalent to a uniform ocean of depth 1 km. If we now suppose that
the conducting core has a distribution of « of the form (8, 1), we find that, corre-
sponding to any value of «,d less than K, there is a certain range of values of m consistent
with the observed results for P%; the upper limit of this range tends to infinity as «,d— K.
Also, if m is fixed and «d gradually increased from zero, the corresponding value of &
required to fit the P% observations increases, and that of ¢ decreases; as k0 — K, k— o0

Vor. CCXXXVIL A, 67
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and ¢->0-903. This limiting distribution, which is the same as that obtained when
m—> 00, consists of a thin surface shell of total conductivity K surrounding an infinitely
conducting core of radius 0-903a,. It is represented diagrammatically by the curve ¢
of fig. 1.

In the case of the storm-time variations, the only important harmonic (in low and
middle latitudes) is P, and it is probable, as indicated above, that the conductivity
of the equivalent uniform oceanic shell is now rather less than in the case of any harmonic
in S, and therefore less than the maximum value K found above for P%. To estimate the
effect of a shell of this conductivity on the storm-time variations, the corresponding

values of co%{nel— (n+1)1,} were found graphically from the values ¢, and 7,, deter-

mined from the observations and shown in Table II1. These values were found to be
less than 17, except near the beginning of the storm. It follows from (10, 1) that ¢, —e;
and ¢, —1; are of the same sign and numerically less than 0-5y and 0-337, respectively,
so that the influence of the oceans on the later storm-time variations is practically
negligible, and is, in any case, considerably less than in the case of the diurnal variations.

It has been seen above that the introduction of the surface shell enables us to take,
consistently with the P# observations, a greater value of m or £ for the core than was
previously possible. This increase in either m or £ will produce a general rise in the
calculated values of ¢, (¢) for the storm-time variations, and the maximum possible 7,(¢)
on the induction theory will clearly be obtained by taking the extreme distribution e.
This theoretical maximum for ¢,(¢) is shown as column ¢’ in Table I11 and as curve ¢’
in fig. 2. It will be seen that the observed values of 7, (¢) are very close to this theoretical
maximum, but do not exceed it, except in one case (¢ = 24), and it seems quite possible
that the exceptionally high value of the observed 7,(¢) in this case is due to some irregular
fluctuation, which the analysis of the observations did not completely eliminate. This
may be regarded as good confirmation of the induction hypothesis; at the same time
it shows that the observed results for % and D,, will not, of themselves, indicate an upper
limit to the value of « for depths greater than about 0-1¢,. It should also be noted that
results differing inappreciably from the above will be obtained if, instead of taking «
to be infinite below r = 0-903q,, as in ¢, we take it to have any value greater than about
107" e.m.u. Hence the observations so far considered are compatible with the con-
ductivity of the earth below a depth of about 0-1g, having any value greater than
about 107! e.m.u.

The least value which «,d can have in the (k,d, m, £, ¢)-model is about
2% 1076 e.m.u. x cm., because the observed results for P then allow m to be as great
as 37, and we find that this value of m is just large enough to give a suitable internal
field for D,,. Thus, with this value of «,J, which corresponds to an ocean of uniform
depth of about } mile, we find that the amplitude ratio (mod £’/I”) and the phase
difference (arg £'/1”) justinside theshell, corresponding to the observed values (2-2, — 18°)
for P2 outside the shell, are respectively 2-4 and --15°. Various distributions of « in


http://rsta.royalsocietypublishing.org/

a
/)

A A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I~
b \

S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

INDUCTION IN NON-UNIFORM CONDUCTORS 535

the conducting core which give rise to these values of mod £’/I’ and arg £’/I" are shown
in Table IIB. Of these, only the distribution for which m = 37, £ = 4 x 104 e.m.u.,
q =1 (represented diagrammatically by curve 4 of fig. 1), gives a satisfactory time
function 7,(¢). This is shown as column 4’ in Table III, and as curve " in fig. 2. It will
be seen from this figure that the curves d’ and ¢’ differ on the whole by less than 1y,
and, with one exception (¢ = 24), the observed values of ¢,(¢) lie on or between these
curves. It thus appears that any distribution between those represented by 4 and ¢ of
fig. 1 willlead, on the induction theory, to the correct internal fields for both P and D ,.
In the case of ¢, the highly conducting inner core is partially shielded from the periodic
variations by the oceanic shell; in the case of d, this shielding is due only in part to the
oceanic shell, and in part to the outer layers of moderate conductivity of the core itself.

The value 2x107% e.m.u. xcm. for «,0 in the distribution d does not, however,
necessarily represent a lower limit to the possible influence of the oceans, because
there is still the possibility that the observations are compatible with a distribution in
which « is, throughout the upper layers, greater than the value which has to be taken
when it is supposed expressible in the form £p~™. In connexion with this, we find that
the distribution in which x = 2:3x 10713 e.m.u. for 7>0-894,, and x = oo (or any
value greater than 10-!! e.m.u.) for r<<0-89¢,, gives the correct amplitude ratio and
phase difference for P%, but leads to a time factor ¢,(¢) for D,, which lies between the
curves ¢’ and d’ of fig. 2, and is just slightly too low to give a satisfactory agreement with
the observed ¢,(¢). Now the only way of improving this result for ¢,(f) would be by
increasing (slightly) the radius of the highly conducting core, but this would upset the
result for P2, unless at the same time « were increased at or near the surface, and de-
creased a little lower down. This shows that the observed results are not entirely
compatible with any distribution in which « does not somewhere decrease (either
suddenly or gradually) with increasing depth, before the depth (about 0-1a,) is reached
where it rapidly increases.

It follows from the above that, if the oceans were assumed to have no appreciable
influence, it would be necessary to suppose that there is a region at or near the earth’s
surface where « is greater than 2-:3 x 10713 e.m.u., and that, between this region and
the deeper and more highly conducting region, there is one where « is distinctly less
than 2:3 x 10713 e.m.u. This, however, seems unlikely, especially as the measured con-
ductivity of surface rocks seldom exceeds 10~1% e.m.u. Itseems more probable that the
oceans have an effect of the same order as that represented by the thin shells in 4 or ¢
above. An independent estimate of this effect, based on an investigation of the induced
currents in a suitable non-uniform thin shell, would obviously be of value in this con-
nexion.

11. THE DEPTH OF PENETRATION OF THE INDUCED CURRENTS

The inferences, which can be drawn from the above results as to the distribution of
conductivity within the earth, are of course restricted by the fact that the induced
67-2
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currents will not penetrate (appreciably) beyond a certain depth. In the case of the
extreme theoretical distribution ¢ the currents do not, in fact, penetrate below the
surface of the conducting core. In the other cases considered, the general character
of the induced current distribution has been determined qualitatively in § 6.

1 | I

X 5mins
1 4 -
2k Y -
10 96hrs .=
24hrs 7
ST T N Sy "o 7 D
8 &
© 0-8 -8 ©
« IS
3] 3]
wn2 wn
0-6 —6
0-4 -4
0-2 -1
/ 1 I 2l
0-05 01 0158 0-2 0-25

depth from surface divided by radius

Fic. 3. Distribution of induced current density when &, within the earth, is given by curve 4, fig. 1.
Curve v shows the amplitude of the induced current as compared with the surface current for the
periodic variation P2 The curves y show the distribution of current at various times, following a sudden
change in the aperiodic field P, (cf. equations (11, 1) and (6, 44)—(6, 48)).

For periodic fields, such as P, the amplitude of the current density is proportional
to mod v, where v is given as a function of p by (6, 17); this was evaluated for the case
when « has the distribution 4 (in which m = 37, k = 4x 10" e.m.u., ¢ = 1), the
harmonic being Pj. The result is shown as the curve v in fig. 3. It will be seen that the
maximum current density is at a depth of about 0-12a, (or 800 km.), and the main
part of the induced current flows between the depths 0-05a, and 0-154,, the current
being negligible at about 0-20q,. This indicates that the information as to the con-
ductivity of the earth, which is likely to be afforded by the diurnal variations, relates
to depths distinctly less than one-fifth of the earth’s radius.

The distribution of induced currents, when the field is aperiodic, is less simple in
character than the above. Ithasbeenshownin§ 6 that the pulse of induced current due
to a sudden change in the inducing field will, in special circumstances, increase in
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INDUCTION IN NON-UNIFORM CONDUCTORS 537

intensity as it penetrates inwards. This will be so when # = 1 (as in the case of the storm-
time variations) and when the conductivity increases downwards at a rate greater
than that corresponding to « = kp~2. In the particular case when the distribution of
is of the form d, the equation (6, 33) shows that the induced current, resulting from an
instantaneous change of 1y in ¢, at time ¢ = 0, is everywhere perpendicular to the radius
vector and eastwards, and is of magnitude

1051075 . .
= ~O}g%d~o- x(t,p)sinf = 3-3 x 1071 x(¢, p) sind, (11, 1)

C
where x(¢, p) is given in various forms in (6, 36)—(6, 45). This function was calculated
as a function of p for a series of values of ¢, and is shown graphically in fig. 3. This figure
shows that the sheet current distribution, which is initially produced on the surface,
rapidly penetrates inwards, reaching a depth of some 200 km. within 5 min. The maxi-
mum current density at first decreases as it penetrates inwards, but after a depth of
about 900 km. is reached (in about 6 hr.) it begins to increase again, being, in fact,
proportional to 1/p. Also the speed with which the point of maximum current density
moves inwards now decreases rapidly, being proportional to p*. The total induced
current is, of course, continually diminishing, so that the maximum gets sharper and
sharper as it penetrates farther inwards. ‘

The exact calculation of the current distribution corresponding to the actual ¢, of
the storm-time variations would be tedious, but its general nature and order of magni-
tude can be inferred from the above. The first rapid decrease in ¢, (corresponding to
the initial éncrease in the horizontal force) produces a pulse of westward current, which
is transmitted inwards in the way just described. This is followed, within about 4 hr.,
by a much greater increase in ¢;, which produces a correspondingly greater pulse of
eastward current, following the westward one inwards and gradually overtaking it.
The subsequent slow recovery of the external field then produces a less intensive but
more extended pulse of westward current, which again gradually overtakes the previous
one, and eventually cancels it out. Fig. 3 shows that the first pulse of current will have
reached a depth of about 0-2¢, after 48 hr. Hence the storm-time changes, during the
first 48 hr., will be affected only by the conductivity at depths less than 0-2a,, and will
not yield any information about the conductivity at depths greater than this.

To estimate the order of magnitude of the induced currents, we note from fig. 3
that the maximum value of (¢, p), following an instantaneous change in ¢, has decreased
in 5 min. from infinity to about 1-5, while in 1} hr. it has decreased to about 0-9, and
does not vary much from this value for the next 96 hr. We infer from (11, 1) that the
maximum current density, induced by the regular part of the storm-time changes, is
about 3 x 107!* e.m.u. per 1y change in ¢, for the more rapid changes and rather less
for the others. Since the maximum variation in ¢, for the average storms now under
consideration is about 28y, the corresponding maximum current density is about
1072 eem.u. This is, as would be expected, somewhat larger than the value
3x 10713 e.m.u., found by Chapman and Price when considering the uniform core
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model, which gave too small a value for ¢,(¢). (The value given in their paper on p. 456
should, of course, read 3 x 10713 e.m.u., not 3 x 10'3 e.m.u.)

12. THE DISTRIBUTION OF ELEGTRICAL CONDUCTIVITY WITHIN THE EARTH

The foregoing results show that the internal fields of both the daily variations and
the storm-time variations can be satisfactorily explained as due to electric currents
induced in the earth by the corresponding primary external fields, provided a suitable
non-uniform distribution is assumed for «. Apart from general considerations, the
precise nature of the internal field in the case of the storin-time variations leaves
no reasonable doubt that this induction hypothesis is the correct one, and consequently
those assumed distributions of «, which have been found suitable for both S and D,
indicate the nature of the actual distribution of x within the earth.

‘The most obvious and important deduction as to the conductivity of the earth,
which can be drawn from the above results, is that it begins to rise very rapidly with
increasing depth at a distance of about 0-1a, (600 or 700 km.) from the surface, because
all the assumed distributions (cf. fig. 1), which give results in satisfactory agreement
with the observations, have this feature in common. This is in general agreement with
the conclusion reached by Chapman and Price that there is a rapid rise in « with
increasing depth somewhere below 250 km., but it now appears that the depth at which
this rapid increase occurs is some 600 or 700 km. from the surface. The conductivity
below this depth must be at least as high as 107!! e.m.u., and may continue to rise
to much higher values. Ifit does continue to rise, e.g. as in the distribution 4, then the
induced currents will not penetrate to any appreciable extent beyond about 0-2a,.
Hence the information as to the conductivity afforded by these variations will not
extend to depths beyond 0-24, unless more elaborate calculations using, e.g., the other
harmonics in the daily variations show that « does not rise much above 107! e.m.u.
between 0-1q, and 0-2a,,.

The estimate of the conductivity at depths less than 0-1¢, is affected by the possible
influence, on the magnetic variations considered, of electric currents induced in the
oceans. If this influence is negligible, the mean conductivity of the earth, down to a
depth of about 0-1a, must be of the order 2x 10 ¥ e.m.u., and the conductivity in
some region near the surface must be somewhat higher than this (§ 10). The obser-
vations are, however, also compatible with the oceans having an effect equivalent to a
uniform ocean covering the whole earth to a depth not greater than 1 km. If their
actual effect is of this order, the conductivity of the earth for some distance below the
surface must be so small that it has practically no effect on the particular variations
considered, i.e. « in this region must be not greater than about 105 e.m.u. This would
imply that « down to depths of 200 or 300 km., and possibly as far as 600 km., would be
of the same order as the measured conductivity of rocks at the earth’s surface. This
distribution of x seems more probable than the alternative one described above.

The above information as to the distribution of « has been derived mainly from the
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harmonic P? in the daily variations, and from the storm-time variations. It might be
rendered more precise by considering other (sufficiently reliable) harmonics in the
diurnal variations. An indication of this is afforded by the phase differences of the
harmonics P}, P, P}, P%, the observed values of which are 13°, 18°, 21°, 25°. Now the
values for these phase differences calculated by Chapman from his original uniform
core model (g = 096, xk = 3-6 x 10713 e.m.u.) were 19°, 19°, 20°, 21°, and did not
show a sufficiently rapid increase with the increasing order of the harmonics. On the
other hand, the values we find for these phase differences, when the extreme distribution
eis used, are 8°, 18°, 25°, 30°, the increase being now considerably too rapid. This shows
that the distribution e is too extreme; it has too much conductivity in the surface shell
and therefore also too much conductivity in the core. Hence the effective mean con-
ductivity of the oceanic shell is probably less than the value 5x 1078 e.m.u. x cm.,
assigned to it in e. Also a definite upper limit to the value of x at about 700 km. could
probably be determined by further calculations for these four harmonics. It is, how-
ever, doubtful whether it would be possible to distinguish between a gradual increase
in k with increasing depth as, for example, in d, or a very abrupt increase, as in ¢, but to
some finite value instead of infinity. In any case, the conclusions based on the present
series of observations should not be pushed too far. It is desirable to check their re-
liability before more extensive calculations are made, and a fresh analysis of a more
recent set of magnetic data is now in progress at the Imperial College. It may also be
noted that if the non-cyclic variation could be analysed into external and internal
parts in the same way as the D, variation—of which it is evidently a later phase—the
relations between these parts would be a further check on the results, and would prob-
ably extend our knowledge of « to slightly greater depths.

SUMMARY

The results of previous investigations by Chapman and Price of the induced fields
and current distributions, associated with the magnetic daily and storm-time variations,
suggest that more precise information as to the distribution of electrical conductivity ()
within the earth might be obtained by considering electromagnetic induction in a
non-uniform sphere. The general theory for any non-uniform conductor is here con-
sidered, and the formal solution for any conductor with spherical symmetry is obtained.
Detailed formulae for the induced field and current distribution, in the special case
when k = kp~™, where £ and m are constants, are obtained and applied to the terrestrial
magnetic variations. The results obtained support the view, expressed by Chapman
and Price, that thereis a considerable increase of k with increasing depth, beyond 250 km.
It seems, however, that the really important increase in « takes place at about 700 km.
depth, beyond which « is at least as great as 107! e.m.u., while above this depth the
mean conductivity may be of the same order as for rocks on the earth’s surface (1016
or 10715 e.m.u.). This suggests that there is some change in the composition of the earth
(e.g. to a more metallic content) at a depth of about 700 km.; seismological evidence
appears to indicate that such a transition occurs at a much greater depth. The results
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also show that there is an effective distribution of « at or near the surface of the earth,
and it seems most probable that this represents the influence of the relatively highly
conducting oceans. The induced currents do not penetrate appreciably beyond a
depth of about one-fifth of the earth’s radius, so that the knowledge of « afforded by the
daily variations and the storm-time variations will be restricted to an outer shell of this
thickness.

(Note added in proof 20 September 1938.) FIollowing publication of the abstract of
this paper, Dr K. E. Bullen has kindly drawn our attention to further seismological
evidence which indicates a change in the composition of the earth at a depth of the
same order as that obtained by us. In particular he has shown (Bullen 1936, 1937)
that unless there is a sharp increase in density at a depth of the order of several
hundred km. the deduced moment of inertia of the central core involves a most im-
probable distribution of matter. Also the work of Byerly (1926), Jeffreys and Bullen
(1933, 1935) and Lehmann (1934) on seismic waves indicates a change in the elastic
properties at a depth which, on the assumption of a sudden change, Jeffreys (1937)
estimates at 47420 km.
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